Excerpted from "The Designer's Guide to Verilog-AMS" by Kundert and Zinke.
For more information, go to www.designers-guide.org/Books.

Mixed-Signal
Modeling

1 Mixed Signal Models

Both analog and digital functionality as well as the interaction between the two
domains are described in mixed signal models. The Verilog-AMS language allows
combining analog and digital behavior into a single model. That means that such a
model can contain both mixed signal behavioral descriptions or it could instantiate a
collection of analog, digital and mixed signal modules. In most cases these models
have both analog and digital pins. But this is not aways the case; occasionaly a
model looks digital in terms of its pin types, but analog behavioral descriptions are
used inside. Or it may happen that a model |ooks purely analog when considering the
type of its pins, but inside digital constructs are used, perhaps to speed up the model.

When using a top-down design methodology for devel oping a mixed-signal IC there
are various needs for mixed-signa models. During the architectural phase, when
blocks are represented abstractly, a single block often includes both complex analog
and digital functionality. It istoo early to divide this block into purely analog or digi-
tal sub-blocks in this phase. Verilog-AMS is used to describe this mixed-signal func-
tionality. At this high level of abstraction the modeling is mostly done in such away
that the disciplines of the pins match. However, as the implementation process pro-
ceeds, the blocks are refined to the point where there may be multiple versions of the
same block, and those different versions may have different disciplines for the same
pin. Thisimplies that as the different versions are used, conflicts may arise between
the discipline of a net, and the pins connected to that net. In these cases, interface
components (or connect modules as per the Verilog-AM S language definition) would
be needed to resolve the conflict. As the design proceeds to lower levels of detail,
these interface components are needed more often. Verilog-AMS provides mecha
nisms to allow these interface components to be inserted automatically based on the
disciplines of the pins and the nets. In doing so, Verilog-AMS not only provides the
ability to naturally describe mixed-signal behavioral models, but it also allows mixed-
signal models to be built-up from purely analog and digital blocks, and those models


kundert
Text Box
Excerpted from "The Designer's Guide to Verilog-AMS" by Kundert and Zinke.
For more information, go to www.designers-guide.org/Books.


Chapter 4 Mixed-Signal Modeling

to be freely interconnected with Verilog-AMS automatically performing the signa
conversion.

The goal of this chapter is to introduce basic mixed signa behavioral and structural
modeling techniques, and to help the user to understand the concepts of interface
components and their automatic insertion. The following section gives an overview of
modeling in the digital domain for the reader not familiar with Verilog-HDL. The
understanding of basic digital constructsis a pre-requisite for the mixed signal model-
ing concepts presented in Section 3 and Section 4.

2 Modeling Discrete Behavior

2.1 Language Basics

The ability provided by Verilog-HDL for describing discrete behavior is fully con-
tained as a subset of Verilog-AMS. That means that every Verilog-HDL model can be
legally used in a Verilog-AM S context.

2.1.1 Disciplines

Consider the simple inverter of Listing 1.

LISTING 1 Verilog-HDL description of an inverter.

module inverter (q, a);
output q;
input a;
wire a, q;  // digital net type (declaration optional)

assign g=~a;
endmodule

The module header in Listing 1 looks similar to the examples provided for Verilog-A.
In comparison to these Verilog-A module examples we notice that there is no disci-
pline declaration provided for a and q (wire is not adiscipline). Disciplines are a con-
cept that is not part of Verilog-HDL. Disciplines first appeared as part of Verilog-A
for continuous-time signals and Verilog-AM S extended the concept to also cover dis-
crete-time signals, however it was made optional for these signals so that Verilog-
HDL models can be used by a Verilog-AMS simulator without modification. The
default discrete-time discipline is logic, which is defined in the disciplines.vams file
and isshown in Listing 2.

100




2 Modeling Discrete Behavior

LISTING 2 The declaration of the discrete discipline ‘logic’.

discipline logic
domain discrete;
enddiscipline

The user may define several discrete disciplines to distinguish between different logic
families, different semiconductor processes, different supply voltages, etc. Neverthe-
less the inverter example shown in Listing 1 could be used directly without discipline
definition and the discipline for a and g would default to logic. Listing 3 adds the
explicit discipline declaration to Listing 1, which will later allow more control over
the interface component insertion process.

LISTING 3 Theinverter of Listing 1 enhanced with a declaration of wire discipline.

‘include “disciplines.vams”

module inverter (q, a);
output q;
input a;
wire a, q; // digital net type (declaration optional)
logic a, q;

assign g = ~a;
endmodule

2.1.2 Wires

Now consider the details of the inverter module. The input and output statements are
already known from Verilog-A.

wire a, q;

defines that a and q are scalar wires. A wire is one type of adigital net. A scalar wire
can carry one bit of information, and that bit can take one of the four values shownin
Table 1 (582.5p164).

A wireisthelogical representation within Verilog of a physical wire. As such, it can
be connected to many things. In particular, there may be more than one thing driving
it. An important aspect of the semantics of awire is how it responds when driven by
multiple outputs (drivers). If al of the drivers connected to awire output a0, the value
of the wireis O; if they al output a 1, then the value of the wire is 1. However, if the
outputs produced by the drivers conflict, the wire resolves to x or unknown. The value
x isinterpreted as “either 0 or 1 or in a state of change”. Any drivers that output a z

101




Chapter 4 Mixed-Signal Modeling

TABLE 1 Verilog logic values.

Name Description Literal Constant
0 Zero, low, or fase. 0 or 1'b0
1 One, high, or true. lor1bl

xor X Unknown or uninitialized. 1'bx

zorZ  Highimpedance (floating). 1'bz

(high impedance or disconnected) are ignored, unless al drivers output a z, in which
case thewire resolvesto az '

A wire is not the only type of net available in Verilog (582.5p164). There are also
those that perform the equivalent of awired-or or wired-and operation, those that are
equivalent to connecting to the supply or to ground, and one, trireg, that mimics a net
that holds its value due to charge storage.

It is also possible to declare a bus (a vector wire) by adding a range specification to a
wire declaration (582.5p164). The range consists of the integer indices for the first
and last members of the bus. For example,

wire [7:0] data;
declares an 8-bit bus, where the members can be accessed with data[i]; and i can
range from 7 to 0.

2.1.3 Continuous Assignment

With the exception of the trireg, wires do not store values. Rather, they only transmit
values that are driven on to them. To continuously transmit a value, it must be contin-
uously driven. One way to do this is with a continuous assignment statement
(587.4.2p213), which isthe last new statement given in Listing 1.

assign g = ~a;

indicates that g is driven at all times to the value that is the inverse of a: the state of g
changes directly with any change of a. The operator ‘~ is the bitwise invert operator,
see (584.1p172) for alist of all operators availablein Verilog-A/MS.

T In certain cases, resolution rules beyond the scope of this book are triggered that cause the
result to be somewhat different. For details, see the Verilog and Verilog-AMS LRMs
[16,28].

Excerpted from "The Designer's Guide to Verilog-AMS" by Kundert and Zinke.
For more information, go to www.designers-guide.com/Books.

102



kundert
Text Box
Excerpted from "The Designer's Guide to Verilog-AMS" by Kundert and Zinke.
For more information, go to www.designers-guide.com/Books.




