
 

In this chapter, Verilog-A, the analog-only subset of Verilog-AMS, will be introduced
using a series of practical examples, one example per section. In the beginning the
examples will be simple, but they will be useful as is. As the chapter progresses the
examples will become more advanced. Once the example is given, all aspects of it
will be discussed. As new ideas are presented, they will be set in bold italics to make
them easier to find and to call your attention to them as important points. Once an
example is covered in detail, straight forward extensions to the concepts introduced
by the example will be covered. Finally, pointers will be given to the language refer-
ence where more information can be found. These references appear like this
(5§2.3p157), which includes the chapter number, the section number, and finally the
page number. In this way, the language will be covered with a fair degree of complete-
ness. 

1  Resistor
One of the simplest models that can be described by Verilog-A is a resistor. In gen-
eral, a resistor is a relationship between voltage and current, as in

f(v, i) = 0, (1)

where v represents the voltage across the resistor, i represents the current through the
resistor, and f is an arbitrary function of two arguments. This is the most general defi-
nition of a resistor and so covers what people commonly refer to as a resistor (more
precisely termed a linear resistor) as well as nonlinear resistors such as the intrinsic
part of diodes and transistors. The resistance of a resistor is the derivative of the volt-
age with respect to current.

The equation for a simple linear resistor is

v = ri, (2)

where r is the resistance. A model for a linear resistor is given in Listing 1. This
model uses only Verilog-A constructs and so can be used with both Verilog-A and
Verilog-AMS simulators. 

3
Analog Modeling

kundert
Text Box
Excerpted from "The Designer's Guide to Verilog-AMS" by Kundert and Zinke.
For more information, go to www.designers-guide.org/Books.



Chapter 3  Analog Modeling

36

The first line of this model is

// Linear resistor (resistance formulation)

The // characters begin a comment (5§1.1p149), which extends to the end of the line.
Comments are meant to explain the model to any person that might be trying to
understand the model. They are ignored by whatever program is reading the model. In
this book, comments will be placed in italics to make them easier to distinguish from
the other parts of the model. Comments can also be written inline by using ‘/∗ ’ to start
the comments, and ‘∗ /’ to end them. Inline comments are rare, but this form is often
use to write multi-line comments, such as

/∗
∗  RESISTOR
∗  A linear resistor that uses the resistance formulation: v = ri
∗ /

Verilog-A/MS is a language that supports multiple disciplines. A discipline is a col-
lection of related physical signal types, which in Verilog-A/MS are referred to as
natures. For example, the electrical discipline consists of voltages and currents,
where both voltage and current are natures. Verilog-A/MS by itself defines only one
discipline, the empty discipline, and it defines no natures. Thus, in order for the lan-
guage to be able to describe models that operate on physical signals, the disciplines
and natures associated with those signals must be defined. A collection of common
disciplines and natures are defined in a file disciplines.vams (5§2.4p159) that is pro-
vided with all implementations of Verilog-A/MS. That file is included into this model
by writing

`include “disciplines.vams”

The tick (`) that precedes the word include indicates this is a preprocessor directive
(5§1.4p151). This line is replaced by the language preprocessor with the contents of

LISTING 1  Verilog-A/MS description of a linear resistor.

// Linear resistor (resistance formulation)

`include “disciplines.vams”

module resistor (p, n);
parameter real r=0; // resistance (Ohms)
inout p, n;
electrical p, n;

analog
V(p,n) <+ r ∗  I(p,n);

endmodule

p

n

vi
+

– v = ri

v = V(p,n)
i = I(p,n)



1 Resistor

37

the file disciplines.vams before being passed to the compiler. It defines the names
electrical, V, and I, which are used later in the model. It also defines other disciplines
and natures, but those are not used in this model. The name include is a keyword of
the Verilog-A/MS language. Being a keyword, it is not a name that you can choose,
both the name and its meaning are specified by the language itself (5§1.3p150). All
keywords in listings are set in bold text.

It is not necessary to use disciplines.vams. You are free to create your own natures and
disciplines. How to do so is described later in Section 3.1 on page 51. 

The basic building blocks of Verilog-A/MS are modules. Modules are descriptions of
individual components (5§9.1p226). In Verilog-A/MS modules are a block of state-
ments that begin with the keyword module, which is then followed by the name of the
module and the list of ports. The statement is terminated with a semicolon.

module resistor (p, n);

A parameter is specified for the module using the parameter statement (5§2.3p157).

parameter real r=0;

In this case, a real valued parameter r is defined that can be specified when the mod-
ule is instantiated (more about this later). The parameter is given a default value of 0,
meaning that if the value is not specified when the module is instantiated, it will
assume a value of 0. Thus with no value specified, the resistor will act as a perfect
short circuit. All parameters must be given default values. However, specifying the
type, in this case real, is optional. If not given, the parameter will take the type of the
default value.

Ports are the points where connections can be made to the component (5§2.5p164). In
this case, they are the terminals for the resistor. So far, the ports have only been given
names, but have not been described in any other way. That is done in the two subse-
quent lines.

inout p, n;
electrical p, n;

These two lines describe the direction and the type of the ports. The port direction is
given by the statement that begins with the keyword inout. There are three directions
possible, input, output, and bidirectional as designated by the input, output, and inout
keywords. Each port should be given a direction. Input ports can sense the signals that
they are connected to, but cannot affect them; output ports can affect the signals, but
cannot sense them; and inout ports can both sense and affect the signals. Since inout
can do everything that both input and output ports can do, one might wonder why
input and output ports are needed. In fact, they are not strictly needed. However, using



Chapter 3  Analog Modeling

38

input and output ports are considered a good practice because it provides clarity of
intent. Labeling a port as either input or output at the top of the module makes the
behavior of the module clearer. It also allows for extra error checking by whatever
tool is reading the module.

The type of the ports is specified by the second of the two lines in which the name of
a discipline is followed by a list of ports. In this case the p and n ports are defined to
be electrical, meaning the signals associated with the ports are expected to be voltage
and current.

The actual behavior of the module is defined in the next two lines. 

analog 
V(p,n) <+ r ∗  I(p,n);

The analog keyword introduces an analog process (5§6.1p196). An analog process is
used to describe continuous time behavior. Syntactically, it is the analog keyword fol-
lowed by a statement that describes the relationship between signals. This relationship
must be true at all times. In this case, the statement that defines the relationship
between the signals on the ports is a contribution statement. A contribution statement
takes the form of a branch signal on the left side of a contribution operator, ‘<+’, fol-
lowed by an expression on the right side (5§3.2p169). The branch signal on the left
side is forced to be equal to the value of the expression. The branch signal on the left
is V(p,n), it is the voltage across the implicit branch between the p and n ports. The
expression on the right is r∗ I(p,n), the product of the parameter r and the branch sig-
nal I(p,n), which is the current that is flowing through the implicit branch between the
p and n ports. Thus, the contribution statement establishes a relationship between the
branch voltage and the branch current that models a linear resistor with resistance r.

The signals V(p,n) and I(p,n) are the voltage across and the current through the
implicit or unnamed branch between the nodes p and n (5§2.6p167). An implicit
branch is referenced using its end points, in this case p and n. The signals associated
with the branch are accessed using the access functions that are given in the defini-
tion of the discipline in disciplines.vams for the branch. An implicit branch inherits its
discipline from its endpoints, both of which must have equivalent disciplines. In this
case, the discipline of the end points p and n are electrical, and so the discipline of the
implicit branch is electrical. The electrical discipline defines V as the access function
for the potential of the branch and I as the access function for the flow through the
branch. As such, the V in V(p,n) accesses the voltage across p and n, and the I in I(p,n)
accesses the current that flows between p and n. 

Finally the module definition is terminated with the endmodule keyword. Any state-
ments that follow it are not associated with this module.

kundert
Text Box
Excerpted from "The Designer's Guide to Verilog-AMS" by Kundert and Zinke.
For more information, go to www.designers-guide.com/Books.




